Created
Sep 1, 2025 10:14 PM
Multi-select
Status
In progress
1. Basic DataFrame Properties π οΈ
Understand your DataFrameβs structure at a glance.
df.indexβ Returns the row index labels of the DataFrame.df.columnsβ Returns the column labels as an Index.df.dtypesβ Returns a Series with each columnβs data type.df.axesβ Returns a list with the row axis and column axis.df.shapeβ Returns a tuple(rows, columns)representing dimensions.df.ndimβ Returns the number of dimensions (always 2 for DataFrame).df.sizeβ Returns total number of elements (rows Γ columns).df.memory_usage()β Shows memory usage for each column plus index.df.emptyβ ReturnsTrueif DataFrame has no elements.df.attrsβ Dictionary for storing custom user metadata.df.info()β Prints concise summary: index dtype, columns, non-null counts.
2. Data Type & Object Management π οΈ
Check, infer, or change your DataFrameβs column data types.
df.astype()β Convert the dtype of one or more columns to a specified type.df.convert_dtypes()β Convert columns to best possible dtypes automatically.df.infer_objects()β Infer better dtypes for object columns.df.copy()β Create a deep or shallow copy to avoid modifying original data.df.set_flags()β Set internal metadata flags.df.flagsβ Inspect DataFrameβs flags (rarely used).df.attrsβ Same as above; user-defined metadata for extra context.
3. Label-Based & Positional Access π οΈ
Access cells, rows, or slices by label or position.
df.at[row_label, col_label]β Fast label-based scalar access (single cell).df.iat[row_index, col_index]β Fast position-based scalar access.df.loc[]β Select rows/columns by label; supports slices, conditions, or lists.df.iloc[]β Select rows/columns by integer position.
Key: at/iat β single cell (fast). loc/iloc β slices or multiple rows/columns.
4. Iteration & Basic Loops π οΈ
Loop through columns or rows.
df.__iter__β Dunder method for iterating over columns (not used directly).df.items()β Iterate over(column_name, Series)pairs.df.keys()β Alias fordf.columns; returns column labels.df.iterrows()β Iterate over(index, row Series)pairs; convenient but slower.df.itertuples()β Iterate rows as namedtuples; faster thaniterrows.
5. Quick Inspection & Conversion π οΈ
Peek at data or convert to NumPy.
df.head(n)β Return firstnrows (default 5).df.tail(n)β Return lastnrows.df.valuesβ Return DataFrame values as a NumPy array (legacy).df.to_numpy()β Preferred way to convert DataFrame to NumPy array.
6. Math, Binary Operations & Comparison π οΈ
Element-wise math, matrix dot products, and value-wise comparison.
Arithmetic
df.add()ordf.__add__β Add element-wise; supports fill_value.df.sub()ordf.__sub__β Subtract element-wise.df.mul()ordf.__mul__β Multiply element-wise.df.div()ordf.truediv()β Divide element-wise (true division).df.floordiv()β Floor division.df.mod()β Modulo.df.pow()β Exponentiate.df.dot()β Matrix multiplication.df.radd(),df.rsub(),df.rmul(),df.rdiv(),df.rtruediv(),df.rfloordiv(),df.rmod(),df.rpow()β Reverse operations.
Comparison
df.lt()β Element-wise less than.df.gt()β Greater than.df.le()β Less than or equal.df.ge()β Greater than or equal.df.eq()β Equal to.df.ne()β Not equal to.
Combine
df.combine(other, func)β Combine two DataFrames element-wise using a function.df.combine_first(other)β Fill missing values withother.
7. Function Application
Apply functions row-wise, column-wise, element-wise, or via a clean pipe.
df.apply(func, axis=0)β Apply function along an axis (0= columns,1= rows).df.applymap(func)β Apply function element-wise.df.agg()ordf.aggregate()β Aggregate using one or more operations.df.transform()β Transform rows/columns; shape is preserved.df.pipe(func)β Pipe DataFrame through a custom function.
8. Aggregation & Descriptive Statistics
Describe or summarize your data.
df.sum()β Sum of values.df.mean()β Mean value.df.std()β Standard deviation.df.var()β Variance.df.count()β Count non-NA cells.df.min()β Minimum value.df.max()β Maximum value.df.median()β Median value.df.mode()β Mode(s).df.prod()ordf.product()β Product of values.df.cumsum()β Cumulative sum.df.cumprod()β Cumulative product.df.cummax()β Cumulative max.df.cummin()β Cumulative min.df.rank()β Rank values.df.quantile()β Return value at specified quantile.df.pct_change()β Percent change over previous row.df.kurt()ordf.kurtosis()β Kurtosis.df.skew()β Skewness.df.sem()β Standard error of mean.df.describe()β Generate descriptive statistics summary.df.corr()β Correlation matrix.df.cov()β Covariance matrix.df.corrwith(other)β Correlation with another DataFrame.df.nunique()β Count distinct elements.df.value_counts()β Count unique value frequencies.
9. Filtering & Conditional
Filter rows conditionally.
df.isin(values)β Check if each element is invalues.df.where(cond)β Replace where condition isFalse.df.mask(cond)β Replace where condition isTrue.df.query(expr)β Query DataFrame with string expression.
10. Reshaping & Pivoting
Switch between wide and long forms.
df.melt()β Unpivot columns to rows (wide β long).df.pivot()β Reshape long to wide; unique index/column pairs.df.pivot_table()β Spreadsheet-style pivot with aggregation.df.stack()β Pivot columns into index (wide β long).df.unstack()β Pivot index levels into columns (long β wide).df.explode()β Transform list-like values to separate rows.
11. Missing Data & Cleaning
Detect, drop, or fill NaNs and duplicates.
df.isna()ordf.isnull()β Detect missing values.df.notna()ordf.notnull()β Detect non-missing.df.fillna(value)β Fill NaNs with a value.df.dropna()β Drop rows/columns with NaNs.df.ffill()ordf.pad()β Forward-fill missing.df.bfill()ordf.backfill()β Backward-fill.df.duplicated()β Mark duplicate rows.df.drop_duplicates()β Drop duplicate rows.
12. Merge, Join & Combine
Combine multiple DataFrames.
df.merge()β SQL-style joins.df.join()β Join columns using index or key.df.update()β Update in place using non-NA values from another DataFrame.
13. Export & IO
Save DataFrame or convert to Python objects.
df.to_csv()β Save as CSV.df.to_excel()β Save as Excel file.df.to_json()β Save as JSON.df.to_pickle()β Serialize as pickle.df.to_sql()β Write to SQL database.df.to_dict()β Convert to dictionary.df.to_numpy()β Convert to NumPy array.
Aliases & Dunder Reminders
agg=aggregatekurt=kurtosisprod=productffill=padbfill=backfillisna=isnullnotna=notnulldiv=truediv__add__etc. = dunder methods; useadd(),sub(), etc. instead.
Pandas DataFrame User Guide
Status | Name |
|---|---|
Done | |
Done | |
Done | |
Done | |
Done | |
Done | |
Not started | |
Not started | |
Not started | |
Not started | |
Not started | |
Not started | |
Not started |