Complete Time Series Analysis and Forecasting with Python
Get the datasets for the course here: https://data-heroes-2.kit.com/time-series-crash-course 🌟 Master Time Series Analysis and Forecasting in Python! 🌟 This crash course is your ultimate guide to mastering time series analysis and forecasting using Python. Whether you're new to time series or want to sharpen your skills, this course has everything you need to succeed. From essential concepts to advanced techniques, you’ll learn how to handle time series data, build models, and forecast like a pro. The course covers key topics, including simple, double, and triple exponential smoothing (Holt-Winters method), model evaluation metrics such as MAE, RMSE, and MAPE, and advanced forecasting models like ARIMA, SARIMA, and SARIMAX. You’ll also dive into practical implementations like daily data preprocessing, cross-validation for time series, and parameter tuning to ensure accurate predictions. With hands-on Python tutorials, you’ll follow step-by-step implementations that make complex concepts easy to understand. By the end of this course, you’ll be able to preprocess time series data, build accurate models, evaluate your results, and confidently predict the future. Ideal for data scientists, machine learning enthusiasts, business analysts, or anyone looking to make data-driven decisions through time series forecasting. Keywords: Time Series Analysis, Python Time Series, Forecasting Techniques, Exponential Smoothing, ARIMA Models, Cross-Validation for Time Series, Model Evaluation Metrics, Predicting the Future. Don’t forget to like, subscribe, and hit the bell icon to stay updated with more courses and tutorials designed to take your skills to the next level! 🚀
www.youtube.com
Data
Note: Fetching Financial Data for Time Series Analysis
Overview
Time series analysis often requires fetching financial data such as stock prices, indices, or economic indicators. While pandas_datareader's web.DataReader() was once commonly used, it no longer supports Yahoo Finance due to API changes. Below are modern alternatives and their complete syntax, focusing on libraries like yfinance, alpha_vantage, and others.
1. Using yfinance (Recommended)
2. Using alpha_vantage
3. Using investpy
4. Using pandas_datareader
5. Common Tips for Time Series Data
Comparison of Libraries
Key Notes
yfinance is the best alternative for Yahoo Finance data and is actively maintained.- For time series, always clean and preprocess the data before analysis.
- Save frequently used data locally to reduce API calls and avoid rate limits.
With these tools, you’ll have access to robust and flexible options for obtaining financial data for time series analysis. Let me know if you need help setting up any specific library! 😊
Step 1: Import Necessary Libraries
First, ensure you’ve imported the libraries you’ll use for data manipulation and visualization.
import pandas as pd
import yfinance as yfStep 2: Download Historical Stock Data
Use the yfinance library to fetch data for your chosen stock.
# Fetch historical stock data for Apple (AAPL)
data = yf.download('AAPL', start='2020-01-01', end='2023-12-31')
# Display the first few rows to understand the structure
data.head()Price | Adj Close | Close | High | Low | Open | Volume |
Ticker | AAPL | AAPL | AAPL | AAPL | AAPL | AAPL |
Date | ||||||
2020-01-02 00:00:00+00:00 | 72.796021 | 75.087502 | 75.150002 | 73.797501 | 74.059998 | 135480400 |
2020-01-03 00:00:00+00:00 | 72.088280 | 74.357498 | 75.144997 | 74.125000 | 74.287498 | 146322800 |
2020-01-06 00:00:00+00:00 | 72.662720 | 74.949997 | 74.989998 | 73.187500 | 73.447502 | 118387200 |
2020-01-07 00:00:00+00:00 | 72.320976 | 74.597504 | 75.224998 | 74.370003 | 74.959999 | 108872000 |
2020-01-08 00:00:00+00:00 | 73.484344 | 75.797501 | 76.110001 | 74.290001 | 74.290001 | 132079200 |
Step 3: Reset the Index
yfinance sets the Date column as the index by default. Reset it to a regular column for easier manipulation.
# Reset the index
data.reset_index(inplace=True)
# Display the updated DataFrame
print(data.head())Price | Date | Adj Close | Close | High | Low | Open | Volume |
Ticker | AAPL | AAPL | AAPL | AAPL | AAPL | AAPL | |
0 | 2020-01-02 00:00:00+00:00 | 72.796021 | 75.087502 | 75.150002 | 73.797501 | 74.059998 | 135480400 |
1 | 2020-01-03 00:00:00+00:00 | 72.088280 | 74.357498 | 75.144997 | 74.125000 | 74.287498 | 146322800 |
2 | 2020-01-06 00:00:00+00:00 | 72.662720 | 74.949997 | 74.989998 | 73.187500 | 73.447502 | 118387200 |
3 | 2020-01-07 00:00:00+00:00 | 72.320976 | 74.597504 | 75.224998 | 74.370003 | 74.959999 | 108872000 |
4 | 2020-01-08 00:00:00+00:00 | 73.484344 | 75.797501 | 76.110001 | 74.290001 | 74.290001 | 132079200 |
Current MultiIndex Structure
Confirm the column status of the dataframe. The DataFrame has a MultiIndex for its columns, with levels like Price and Ticker. Example:
MultiIndex([
('Date', ''),
('Adj Close', 'AAPL'),
('Close', 'AAPL'),
('High', 'AAPL'),
('Low', 'AAPL'),
('Open', 'AAPL'),
('Volume', 'AAPL')],
names=['Price', 'Ticker']
)Combine MultiIndex Levels
You can flatten the MultiIndex by combining levels into single column names using an underscore (_) or other separators:
# Flatten MultiIndex columns
data.columns = ['_'.join(filter(None, col)).strip() for col in data.columns]
# Display the updated column names
print(data.columns)Index(['Date', 'Adj Close_AAPL', 'Close_AAPL', 'High_AAPL', 'Low_AAPL',
'Open_AAPL', 'Volume_AAPL'],
dtype='object')Explanation:
filter(None, col): Removes empty strings orÂNone values from the levels.'_'.join(...): Joins the remaining parts of the MultiIndex with an underscore..strip(): Removes leading/trailing spaces.
Date | Adj Close_AAPL | Close_AAPL | High_AAPL | Low_AAPL | Open_AAPL | Volume_AAPL | |
0 | 2020-01-02 00:00:00+00:00 | 72.796021 | 75.087502 | 75.150002 | 73.797501 | 74.059998 | 135480400 |
1 | 2020-01-03 00:00:00+00:00 | 72.088280 | 74.357498 | 75.144997 | 74.125000 | 74.287498 | 146322800 |
2 | 2020-01-06 00:00:00+00:00 | 72.662720 | 74.949997 | 74.989998 | 73.187500 | 73.447502 | 118387200 |
3 | 2020-01-07 00:00:00+00:00 | 72.320976 | 74.597504 | 75.224998 | 74.370003 | 74.959999 | 108872000 |
4 | 2020-01-08 00:00:00+00:00 | 73.484344 | 75.797501 | 76.110001 | 74.290001 | 74.290001 | 132079200 |
Step 4: Rename Columns
Standardize column names for easier access. Convert them to lowercase and replace spaces with underscores.
# Rename columns to lowercase and replace spaces with underscores
data.columns = data.columns.str.lower().str.replace(' ', '_')
# Display the renamed columns
print(data.head())
date | adj_close_aapl | close_aapl | high_aapl | low_aapl | open_aapl | volume_aapl | |
0 | 2020-01-02 00:00:00+00:00 | 72.796021 | 75.087502 | 75.150002 | 73.797501 | 74.059998 | 135480400 |
1 | 2020-01-03 00:00:00+00:00 | 72.088280 | 74.357498 | 75.144997 | 74.125000 | 74.287498 | 146322800 |
2 | 2020-01-06 00:00:00+00:00 | 72.662720 | 74.949997 | 74.989998 | 73.187500 | 73.447502 | 118387200 |
3 | 2020-01-07 00:00:00+00:00 | 72.320976 | 74.597504 | 75.224998 | 74.370003 | 74.959999 | 108872000 |
4 | 2020-01-08 00:00:00+00:00 | 73.484344 | 75.797501 | 76.110001 | 74.290001 | 74.290001 | 132079200 |
4. Rename Columns (Optional)
If you prefer cleaner column names, you can rename them manually:
# Rename columns for simplicity
data.rename(columns={
'adj_close_aapl': 'adj_close',
'close_aapl': 'close',
'high_aapl': 'high',
'low_aapl': 'low',
'open_aapl': 'open',
'volume_aapl': 'volume'
}, inplace=True)
# Display the updated DataFrame
data
Step 5: Handle Missing Values
Check for missing values and decide how to handle them.
# Check for missing values
print(data.isnull().sum())
# Option 1: Fill missing values using forward fill
data.fillna(method='ffill', inplace=True)
# Option 2: Drop rows with missing values (if appropriate)
# data.dropna(inplace=True)
Step 6: Convert date Column to Datetime
Ensure the date column is in the correct datetime format.
# Convert the date column to datetime format
data['date'] = pd.to_datetime(data['date'])
# Verify the data type
print(data.info())Step 7: Filter Relevant Columns
If you don’t need all columns, keep only the relevant ones for your analysis.
# Keep only relevant columns
data = data[['date', 'open', 'high', 'low', 'close', 'volume']]
# Display the filtered DataFrame
print(data.head())Step 8: Handle Outliers (Optional)
Identify and handle outliers, if necessary.
# Example: Cap outliers in the 'close' column using the 1st and 99th percentiles
q1 = data['close'].quantile(0.01)
q99 = data['close'].quantile(0.99)
data['close'] = data['close'].clip(lower=q1, upper=q99)
# Verify the changes
print(data.describe())Step 9: Save Cleaned Data
Save the cleaned dataset for future use.
# Save the cleaned data to a CSV file
data.to_csv('AAPL_cleaned_stock_data.csv', index=False)
print("Cleaned data saved to 'AAPL_cleaned_stock_data.csv'")
Final Cleaned Data Overview
After the above steps, your cleaned data will:
- Have a reset index.
- Use standardized, lowercase column names.
- Handle missing values appropriately.
- Include only relevant columns.
- Handle potential outliers.
- Be saved as a CSV for future use.
Bonus: Visualizing the Cleaned Data
You can create simple visualizations to ensure the data looks correct.
import matplotlib.pyplot as plt
# Plot the closing price
plt.figure(figsize=(10, 6))
plt.plot(data['date'], data['close'], label='Closing Price')
plt.title('Apple Stock Closing Prices')
plt.xlabel('Date')
plt.ylabel('Price')
plt.legend()
plt.grid()
plt.show()
This step-by-step process ensures your data is ready for time series analysis or further modeling! Let me know if you need additional help. 😊