K-Nearest Neighbors classifier (KNN)
📎

K-Nearest Neighbors classifier (KNN)

Classification
Distance-Based Models
Import Statement

Status
In progress

K-Nearest Neighbors (KNN): A Complete Course for Data Scientists

MODULE 1: Introduction to KNN

1.1 What is KNN?

  • Concept of similarity
  • KNN as a lazy, non-parametric learning algorithm
  • Classification vs Regression tasks

1.2 Real-World Use Cases

  • Recommendation systems
  • Customer segmentation
  • Fraud detection
  • Handwritten digit recognition (MNIST)

📊 MODULE 2: Theoretical Foundations

2.1 How KNN Works

  • Distance-based voting (classification)
  • Distance-weighted averaging (regression)
  • Role of the parameter k

2.2 Distance Metrics

  • Euclidean Distance
  • Manhattan Distance
  • Minkowski Distance
  • Cosine Similarity (when to use it)

2.3 Curse of Dimensionality (review this again here)

  • Impact on KNN
  • Importance of feature scaling and dimensionality reduction

⚙️ MODULE 3: Data Preparation for KNN

3.1 Feature Scaling

  • Why scaling matters in distance calculations
  • Min-Max vs StandardScaler

3.2 Handling Missing Values

  • Imputation strategies
  • Using KNNImputer

3.3 Feature Selection

  • Reducing noise to improve performance

💻 MODULE 4: Implementing KNN in Python

4.1 From Scratch (Step-by-step with NumPy)

  • Writing your own KNN classifier and regressor

4.2 With Scikit-learn

  • KNeighborsClassifier
  • KNeighborsRegressor
  • Important parameters: n_neighborsweightsmetricalgorithm

4.3 Evaluating Performance

  • Accuracy, precision, recall, F1 (classification)
  • MAE, RMSE, R² (regression)
  • Confusion matrix

🔍 MODULE 5: Model Selection and Optimization

5.1 Choosing the Right k

  • Bias-variance trade-off
  • Plotting error vs k

5.2 Cross-Validation

  • K-Fold CV to evaluate KNN
  • GridSearchCV to tune hyperparameters

5.3 Weighted KNN

  • Uniform vs distance weights
  • Handling imbalanced datasets

🚀 MODULE 6: Advanced KNN Techniques

6.1 KD-Tree and Ball-Tree

  • Efficient neighbors search
  • When brute is better

6.2 KNN with Large Datasets

  • Sampling
  • Approximate Nearest Neighbors (FAISS, Annoy)

6.3 KNN in Unsupervised Learning

  • KNN-based anomaly detection (e.g., LOF)
  • KNN for density estimation

📦 MODULE 7: Project-Based Learning

7.1 Classification Project

  • Customer churn prediction
  • Dataset: Telco churn / synthetic

7.2 Regression Project

  • House price prediction
  • Dataset: Boston Housing / Superstore

7.3 Outlier Detection Project

  • Using KNN in PyOD
  • Dataset: Credit card fraud or synthetic

🧪 MODULE 8: Evaluation & Comparison

8.1 Compare KNN vs:

  • Logistic Regression
  • Decision Tree
  • SVM
  • Random Forest

8.2 When Not to Use KNN

  • High-dimensional data
  • Need for interpretability

📚 BONUS RESOURCES

  • Papers: KNN improvements, real-time nearest neighbor search
  • Tools: sklearnPyODFaissAnnoyKNNImputer
  • Cheat sheet PDF

MODULE 1: Introduction to KNN

MODULE 2: Theoretical Foundations

MODULE 3: Data Preparation for KNN