XGBoost Regressor
XGBoost Regressor

XGBoost Regressor

Classification
Boosting Algorithms
Import Statement

import xgboost as xgb

Model Name

Status 1
Done

Introduction

Key Differences Between XGBClassifier and XGBRegressor

Core Features of XGBoost

How XGBoost Works

The Optimized Data Structure in XGBoost: xgb.DMatrix

Complete Parameter Table for XGBoost

Example 1

Example 2

Guide: num_boost_round vs  n_estimators

Best Practices

Example Comparing Both

Summary

Advanced Features

📌 Understanding the Error

The error message:

pgsql
CopyEdit
AttributeError: 'super' object has no attribute '__sklearn_tags__'

occurs because XGBoost (XGBRegressor) does not fully implement sklearn's new API requirements, which were introduced in Scikit-Learn 1.7.

🔍 Why is this happening?

  • Scikit-Learn 1.7+ introduced a new method __sklearn_tags__.
  • XGBRegressor does not yet define this method in its implementation.
  • As a result, XGBoost models do not fully comply with sklearn.base.BaseEstimator in the latest versions of Scikit-Learn.

✅ Solution: Downgrade Scikit-Learn

Option 1: Use an Earlier Version of Scikit-Learn

Since Scikit-Learn 1.7+ is not fully compatible with XGBoost yet, downgrade it to 1.6.1:

bash
CopyEdit
pip install scikit-learn==1.6.1

Then restart your notebook or script.

✅ Alternative Fixes

Option 2: Use XGBoost’s .fit() Instead of sklearn Integration

Instead of XGBRegressor().fit(), use xgb.train() with DMatrix:

python
CopyEdit
import xgboost as xgb

# Convert to DMatrix
dtrain = xgb.DMatrix(X_train, label=y_train)
dtest = xgb.DMatrix(X_test, label=y_test)

# Define parameters
params = {
    "objective": "reg:squarederror",
    "eval_metric": "rmse",
    "max_depth": 2,
    "learning_rate": 0.1,
}

# Train XGBoost model
xgb_model = xgb.train(params, dtrain, num_boost_round=100)

This bypasses Scikit-Learn entirely.

🚀 Best Fix?

✅ For compatibility: Use pip install scikit-learn==1.6.1

✅ For XGBoost-native training: Use xgb.train() with DMatrix.

Let me know which approach you prefer! 🚀