Status
Done
Complete KNNImputer
Professional Guide
A Comprehensive Reference for Data Scientists
Table of Contents
- Introduction & Fundamentals
- Mathematical Foundation
- Implementation Basics
- Parameter Deep Dive
- Practical Examples
- Advanced Techniques
- Performance Optimization
- Best Practices
- Troubleshooting Guide
- Real-World Case Studies
‣
Introduction & Fundamentals
‣
Mathematical Foundation
‣
Implementation Basics
‣
Parameter Deep Dive
‣
Practical Examples
‣
Advanced Techniques
‣
Performance Optimization
‣
Best Practices
‣
Troubleshooting Guide
‣
Real-World Case Studies
‣
Advanced Performance Monitoring
Production Deployment Guide
Scalable KNN Imputation Pipeline
class ProductionKNNImputer:
"""
Production-ready KNN imputation with monitoring and error handling
"""
def __init__(self, config_path=None):
self.config = self._load_config(config_path)
self.imputer = None
self.scaler = None
self.encoders = {}
self.feature_names = None
self.is_fitted = False
def _load_config(self, config_path):
"""Load configuration from file or use defaults"""
default_config = {
'n_neighbors': 5,
'weights': 'distance',
'algorithm': 'auto',
'chunk_size': 10000,
'n_jobs': -1,
'validation_split': 0.2,
'max_memory_gb': 8
}
if config_path:
import json
with open(config_path, 'r') as f:
user_config = json.load(f)
default_config.update(user_config)
return default_config
def _estimate_memory_usage(self, n_samples, n_features):
"""Estimate memory usage for KNN imputation"""
# Rough estimate: distance matrix + feature matrix
distance_matrix_gb = (n_samples ** 2 * 8) / (1024 ** 3)
feature_matrix_gb = (n_samples * n_features * 8) / (1024 ** 3)
total_gb = distance_matrix_gb + feature_matrix_gb
return total_gb
def _preprocess_data(self, df