✉️

podcast, blog, newsletter

Date
September 4, 2024 → February 28, 2025
Assign
Status
Not started

To apply machine learning using linear and logistic regression to analyze the daily returns of stocks, you can follow these steps:

1. Calculate Daily Returns (Preprocessing)

  • First, ensure that the daily return data is in a structured format (e.g., DataFrame) with features for each stock's returns.
  • Ensure each stock’s returns are aligned with the benchmark's daily returns for a comparative analysis.

2. Define a Problem Statement

  • Linear Regression: Predict the future daily return of each stock based on historical returns. Here, you'd be predicting a continuous value.
  • Logistic Regression: Classify whether the stock’s daily return will be positive or negative relative to the benchmark. This classification approach can use binary labels (e.g., 1 for above the benchmark, 0 for below).

3. Prepare the Dataset

  • Create a feature set (X) and target variable (y).
  • For Linear Regression:
    • Features: Use historical daily returns (e.g., past 5-day returns) as input features.
    • Target: The next day’s return of each stock.
  • For Logistic Regression:
    • Features: Similar to linear regression, use past daily returns.
    • Target: Convert the returns into binary classes (1 if return is positive, 0 if negative or vice versa).

4. Train-Test Split

  • Split the data into training and testing sets to evaluate model performance. Typically, you might use an 80-20 or 70-30 split.

5. Implement Linear Regression (for Daily Return Prediction)

  • Model: Use LinearRegression from sklearn.linear_model.
  • Training: Fit the model using the training set.
  • Evaluation: Measure the Mean Absolute Error (MAE) or Mean Squared Error (MSE) on the test set to assess prediction accuracy.

6. Implement Logistic Regression (for Classification)

  • Model: Use LogisticRegression from sklearn.linear_model.
  • Training: Train the model to classify the direction of daily returns.
  • Evaluation: Measure performance with accuracy, precision, and recall on the test set.

Example Code

Here's an example of how to set up both linear and logistic regression for this data:

python
Copy code
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, LogisticRegression
from sklearn.metrics import mean_absolute_error, accuracy_score, precision_score, recall_score

# Sample data setup (assuming 'aapl', 'msft', 'googl', 'amzn' are DataFrames with daily returns)
data = pd.DataFrame({
    'AAPL': aapl['daily_return'],
    'MSFT': msft['daily_return'],
    'GOOGL': googl['daily_return'],
    'AMZN': amzn['daily_return'],
    'SPY': benchmark['daily_return']
})

# Feature Engineering: Lagged returns
data['AAPL_lag1'] = data['AAPL'].shift(1)
data['MSFT_lag1'] = data['MSFT'].shift(1)
data['GOOGL_lag1'] = data['GOOGL'].shift(1)
data['AMZN_lag1'] = data['AMZN'].shift(1)
data['SPY_lag1'] = data['SPY'].shift(1)
data.dropna(inplace=True)

# Linear Regression for Daily Return Prediction
X = data[['AAPL_lag1', 'MSFT_lag1', 'GOOGL_lag1', 'AMZN_lag1', 'SPY_lag1']]
y = data['AAPL']  # Target for AAPL prediction

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
linear_model = LinearRegression()
linear_model.fit(X_train, y_train)

# Prediction and Evaluation for Linear Regression
y_pred = linear_model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
print("Linear Regression - Mean Absolute Error:", mae)

# Logistic Regression for Direction Prediction
data['AAPL_direction'] = np.where(data['AAPL'] > 0, 1, 0)  # Target direction (1 for positive, 0 for negative)
y_direction = data['AAPL_direction']

X_train, X_test, y_train, y_test = train_test_split(X, y_direction, test_size=0.2, random_state=42)
logistic_model = LogisticRegression()
logistic_model.fit(X_train, y_train)

# Prediction and Evaluation for Logistic Regression
y_pred_direction = logistic_model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred_direction)
precision = precision_score(y_test, y_pred_direction)
recall = recall_score(y_test, y_pred_direction)

print("Logistic Regression - Accuracy:", accuracy)
print("Logistic Regression - Precision:", precision)
print("Logistic Regression - Recall:", recall)

7. Interpret the Results

  • Linear Regression: Review the MAE or MSE values to assess prediction performance. You could further visualize predicted vs. actual returns.
  • Logistic Regression: Use accuracy, precision, and recall to understand the classification effectiveness, particularly useful to assess if the model correctly predicts the positive or negative return direction.

This process helps in understanding both the magnitude and the direction of stock returns, which are crucial for financial modeling and trading strategies.