NumPy is a powerful Python library for numerical computing, offering n-dimensional array processing and various mathematical functions. It enhances performance with optimized C code while maintaining Python's flexibility. The tutorial covers array creation, manipulation, matrix operations, linear algebra, and random data handling, making it accessible for programmers of all backgrounds.

NumPy Tutorial – Python Library
NumPy is a general-purpose array-processing Python library which provides handy methods/functions for working n-dimensional arrays. NumPy is a short form for “Numerical Python“. It provides various computing tools such as comprehensive mathematical functions, and linear algebra routines.
- NumPy provides both the flexibility of Python and the speed of well-optimized compiled C code.
- Its easy-to-use syntax makes it highly accessible and productive for programmers from any background.
This NumPy tutorial helps you learn the fundamentals of NumPy from Basics to Advanced, like operations on NumPy array, creating and plotting random data sets, and working with NumPy functions.
Why Numpy ?
NumPy revolutionized the way we handle numerical data in Python. It is created to address the limitations of traditional Python lists when it comes to numerical computing. It is developed by Travis Olliphant in 2005.
Numpy Array in Python
- create a array object
- create numpy array from list
- create a numpy array from Tuple
- create a numpy using
fromtier()
- create a numpy array using
arange()
- create a numpy array using
linespace
- Create a numpy array using
nump.empty( )
- create a numpy array using
nump.one( )
- create a numpy array using
nump.zero( )
- Create a Numpy Array using
nump.eye( )
- Create 1D NumPy Array using
nump.random.rand()
- Create a Full NumPy Array using
np.full()
- Create Numpy from
numpy.core.fromrecords()
NumPy Array Manipulation
new_array = np.copy(original_array)
new_array = original_array.view()
new_array.base