Status
Done
TABLE OF CONETNT
Export & Conversion
1. File Export Formats
df['series'].to_pickle(path) → Save as Python pickle file (preserves dtypes)df['series'].to_csv(path) → Export to CSV (with optional header/index)df['series'].to_excel(path) → Write to Excel sheet (requiresÂopenpyxl/xlsxwriter)df['series'].to_hdf(path, key) → Store in HDF5 file (for large datasets)df['series'].to_sql(name, con) → Write to SQL database (requires SQLAlchemy)
2. Data Structure Conversion
df['series'].to_dict() → Convert to Python dictionary {index: value}df['series'].to_frame() → Convert to single-column DataFramedf['series'].to_xarray() → Convert to xarray.DataArray (for multidimensional data)
3. String/Text Formats
df['series'].to_json() → Serialize to JSON string/filedf['series'].to_string() → Render as console-friendly stringdf['series'].to_latex() → Generate LaTeX table formatdf['series'].to_markdown() → Convert to Markdown table
4. Utility Outputs
df['series'].to_clipboard() → Copy to system clipboard (for Excel pasting)
Assume you have this Series:
import pandas as pd
sales_transaction = pd.Series([2500, 3700, 4800], index=['2025-07-01', '2025-07-02', '2025-07-03'], name='Amount')‣
1. File Export Formats
‣
2. Data Structure Conversion
‣
3. String/Text Formats
‣
4. Utility Outputs
Key Comparison Table
Method | Best For | Preserves Dtype | Human Readable |
to_pickle() | Python reuse | ✓ | ✗ |
to_csv() | Cross-app sharing | ✗ | ✓ |
to_dict() | Python integration | ✓ | ✓ |
to_json() | Web or APIs | Partial | ✓ |
to_hdf() | Large storage | ✓ | ✗ |
✅ Example Code
python
CopyEdit
import pandas as pd
s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
# Export to CSV
s.to_csv('data.csv')
# data.csv content:
# a,1
# b,2
# c,3
# Convert to dict
d = s.to_dict()
print(d)
# {'a': 1, 'b': 2, 'c': 3}
# Export to Markdown
print(s.to_markdown())
# | | 0 |
# |----|------|
# | a | 1 |
# | b | 2 |
# | c | 3 |
# Copy to clipboard
s.to_clipboard(index=True, header=False)
✅ Best Practices
- 📌 UseÂ
to_pickle() for speed if you only need to share data with yourself or other Python processes. - 📌 ChooseÂ
to_csv() orÂto_json() for maximum compatibility if others will open the file in Excel, R, or online tools. - 📌 UseÂ
to_hdf() for big data projects to keep reads/writes fast and efficient. - 📌 Quick output: UseÂ
to_clipboard() when working with Excel. You can copy-paste without saving intermediate files. - 📌 Always test your export and re-import steps, especially if you share files across different systems.
✅ Pro Tip
Always check the file after export. For CSV and Excel, inspect the header, index, and any NA values. Use index=False or header=False in to_csv() if you do not want index/column names in the file.
✅ Common Dependencies
Format | Dependency |
to_excel() | openpyxl or xlsxwriter |
to_hdf() | pytables |
to_sql() | SQLAlchemy or DB connector |
Run pip install openpyxl pytables SQLAlchemy to ensure your environment is ready.
📌 Summary
✔ Pickle → Best for fast, Python-only workflows
✔ CSV/Excel → Best for sharing
✔ HDF/SQL → Best for scale and production storage
✔ Clipboard/Markdown/LaTeX → Best for quick reports, blogs, or papers