Created
Sep 1, 2025 10:14 PM
Multi-select
Status
Not started

1. Reshaping & Pivoting Data
pd.melt()
- Unpivot data from wide to long formatdf.pivot()
- Reshape data (index to columns)pd.pivot_table()
- Create a pivot table with aggregationpd.crosstab()
- Compute a cross-tabulation (frequency table)pd.wide_to_long()
- Convert wide-format data to long-format
2. Combining & Merging Data
pd.merge()
- Merge DataFrames (SQL-style join)pd.merge_ordered()
- Merge with ordered data (like SQL outer join)pd.merge_asof()
- Merge based on nearest key (as of join)pd.concat()
- Concatenate DataFrames along an axis
3. Handling Categorical & Dummy Data
pd.get_dummies()
- Convert categorical variables into dummy/indicator variablespd.from_dummies()
- Convert dummy variables back to categoricaldf['col'].factorize()
- Encode categorical data as numerical labelsdf['col'].unique()
- Return unique valuespd.cut(df['col'], bins)
- Bin values into discrete intervalspd.qcut(df['col'], q)
- Bin values into quantile-based intervals
4. Missing Data Handling
df['col'].isna()
/df['col'].isnull()
- Detect missing valuesdf['col'].notna()
/df['col'].notnull()
- Detect non-missing values
5. Type Conversion & Parsing
pd.to_numeric(df['col'])
- Convert to numeric dtypepd.to_datetime(df['col'])
- Convert to datetimepd.to_timedelta(df['col'])
- Convert to timedeltapd.eval()
- Evaluate string expressions
6. Date & Time Handling
pd.date_range()
- Generate date-time rangepd.bdate_range()
- Generate business day rangepd.period_range()
- Generate period rangepd.timedelta_range()
- Generate timedelta rangedf['datetime_col'].infer_freq()
- Infer frequencypd.interval_range()
- Generate interval rangespd.tseries.api.guess_datetime_format()
- Guess datetime format
7. Hashing & Interoperability
pd.util.hash_array()
- Hash a NumPy arraypd.util.hash_pandas_object()
- Hash a pandas objectpd.api.interchange.from_dataframe()
- Convert to interchange object
‣