Status
Done
TABLE OF CONTENT
1. Element-wise Operations
df['series'].map(arg) → Map values using a dict/Series/function (element-wise)df['series'].apply(func) → Apply a function along the Series (element-wise or aggregate)
2. Aggregation Methods
df['series'].agg(func) → Aggregate using one or multiple operations (alias:Âaggregate())- Common funcs:Â
'sum',Â'mean',Â'min',Â'max', or custom functions
3. Transformation Methods
df['series'].transform(func) → Return transformed values (same shape as input)- Differs fromÂ
agg(): maintains original dimensions
4. Series Combination
df['series'].combine(other, func) → Combine with another Series using a functiondf['series'].combine_first(other) → Fill nulls using another Series
Key Differences:
Method | Best For | Returns |
map() | Simple value replacements | Same length |
apply() | Complex element-wise operations | Same length |
agg() | Summarizing data | Scalar/value |
transform() | Group-aware transformations | Same length |
Example Usage:
When to Use:
- UseÂ
map()Â for simple value lookups - UseÂ
apply()Â for custom complex operations - UseÂ
agg()Â for summaries,Âtransform()Â for group-wise standardization - UseÂ
combine()Â for element-wise logic between Series
import pandas as pd
import seaborn as sns
# Load Titanic dataset
df = sns.load_dataset('titanic')
Function Mapping & Transformation in Pandas Series
‣
1. Element-wise Operations
‣
2. Aggregation Methods
‣
3. Transformation Methods
‣
4. Series Combination
‣
Performance Considerations
‣