Status
Done
TABLE OF CONTENT
1. Type Conversion
df['series'].astype(dtype)→ Force cast to specified dtype (e.g.,'int','float','str','category')df['series'].convert_dtypes()→ Convert to best possible nullable dtype (Pandas 1.0+)df['series'].infer_objects()→ Infer better dtype for object columns (soft conversion)
2. Memory & Copy Management
df['series'].copy(deep=True)→ Create a copy (deep=True for full memory copy)df['series'].bool()→ Return the bool value (only for single-element boolean Series)
Key Notes:
astype()vsconvert_dtypes():astype()forces conversion (may lose info)convert_dtypes()intelligently chooses nullable dtypes (e.g.,Int64instead offloatfor missing values)- Use
infer_objects()when dealing with mixed-type object columns bool()raises ValueError if Series doesn't have exactly 1 boolean element
Best Practices:
- Prefer
convert_dtypes()for modern nullable types - Use
astype()when you need specific control - Always
copy()before modifying if you need the original bool()is mainly for scalar boolean extraction
‣
1. Type Conversion Methods
‣
2. Memory & Copy Management
‣
Comparison Table
‣